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Water vapor millimeter wave foreign continuum:
A Lanczos calculation in the coordinate representation
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The water vapor foreign-continuum absorption has been calculated theoretically from first principles
for the millimeter wave spectral region as a function of frequencyf and temperatureT. The
calculations are made using the Lanczos algorithm by writing the resolvent operator (v2L)21 as
continued fractions. In order to guarantee the quick convergence of the continued fractions, the line
space of H2O is divided into two subspaces: one consists of the positive resonance lines and the
other the negative ones. By ignoring the coupling between them, (v2L)21 is expressed as a sum
of two continued fractions. The parameters appearing in each of the fractions are functions of the
matrix elements of powers of the Liouville operatorL between the starting vectors spanning the
corresponding subspaces. In the present work, we have taken into account all powers ofL up to 5.
With the coordinate representation in which the orientations of the H2O–N2 collision pair are chosen
as the basis functions in Hilbert space, the anisotropic interaction potential is diagonal, and
calculations of the matrix elements are transformed to multidimensional integrations. The latter are
evaluated with the Monte Carlo method. In order to reduce the lengthy calculations, we assume that
the anisotropic potential has rotational symmetry about theZ axis of H2O, and consists of the
long-range dipole–quadrupole part and a short-range repulsive site–site model. Once the parameters
of the continued fractions are known, one can calculate the poles and residues and then carry out the
ensemble average over the translational motion. Within the quasistatic approximation, one can treat
the latter classically and obtain contributions to the absorption coefficient at the poles. Finally, the
absorption coefficient at frequencyf can be derived by an interpolation method. The results are fitted
to a simple function off andT, and are compared with experimental data and with two different
versions of Liebe’s empirical model. In general, the theoretical results are in good agreement with
the experiment. Meanwhile, the magnitudes of the theoretical absorption are between those of the
1989 and 1993 versions, but the temperature dependence is closer to the latter one. ©2002
American Institute of Physics.@DOI: 10.1063/1.1516792#
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I. INTRODUCTION

A good knowledge of the water vapor millimeter wav
foreign-continuum absorption is important for atmosphe
applications, especially in dry air environments. At prese
our understanding of the problem is not satisfactory. Labo
tory measurements of the foreign continuum made by dif
ent groups differ by large amounts and various empiri
models proposed differ significantly from each other.1 Mean-
while, there is a lack of theoretical work heretofore fro
which one is able to predict the millimeter wave foreig
continuum quantitatively well. Collision-induced absorptio
~CIA! has been proposed to be partly responsible for
continuum,2 but there is no unambiguous laboratory e
dence or theoretical calculations to support this assertion
the other hand, although the recent far-wing line sha
theory works well in calculating continuum absorptions f
the infrared spectral region,3 its applicability in the millime-
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ter wave region is questionable. The main reason for thi
not the far-wing line shape theory itself, but the band aver
approximation,4 a usual procedure introduced to simpli
calculations. There are some alternative theoretical meth
available to calculate the millimeter wave continuum. One
so-called ‘‘third-order linear absorption’’ which has been a
plied for calculating the self-continuum.5 But this method is
not applicable for the foreign continuum, at least for th
caused by the H2O–N2 collision pairs, because it is limited
to cases in which two interacting molecules undergo tran
tions by sharing one photon energy cooperatively. The s
ond is the Lanczos algorithm, which was used successf
to calculate the millimeter wave self-continuum.6 With the
Lanczos algorithm, we showed that one can write the sp
tral density as a continued fraction, and using the lowe
order truncation, we can calculate the absorption. Howe
an attempt to apply it for calculating the dominant contrib
tion to the foreign continuum in the atmosphere caused
the H2O–N2 collision pairs has not been carried out. Becau
the molecules are not identical, there is no contribution to
1 © 2002 American Institute of Physics
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absorption from the lowest-order truncation of the continu
fractions. As shown in the next section, there are major pr
lems encountered when one considers higher-order tru
tions.

A breakthrough for this problem arose from our far-win
line shape research. In the past few years, we have devel
a first-principles far-wing line shape formalism and applied
to H2O continuum absorption in the infrared spectral regio
In order to overcome convergence problems, we introdu
the coordinate representation in which the eigenfunction
the orientations of the two interacting molecules are cho
as the complete set of basis functions in Hilbert space7,8

With this representation, the interaction potential is diagon
summations over states become multidimensional inte
tions over the continuous angular variables, and as m
states as desired can be included in the calculations.
convergence criterion is transformed to the feasibility of c
culating these integrations, and the latter can be success
evaluated using the Monte Carlo method.3 Although the suc-
cess of our far-wing line shape formalism in predicting t
infrared continua does not help us directly to solve the m
limeter problem, it turns out that the coordinate represen
tion and the Monte Carlo method are two powerful tools t
enable us to apply the Lanczos algorithm successfully
calculating the millimeter wave foreign continuum.

The paper is organized in the following way. In Sec.
we discuss the general formalism for the calculation of
absorption coefficient. In Sec. II A, we briefly review th
relation of the absorption coefficient to the spectral dens
and express the latter in terms of traces over the internal
translational degrees of freedom for a pair of interacting m
ecules. In Sec. II B, we describe the Lanczos algorithm
writing the trace of the internal degrees in terms of a con
ued fraction. Explicit expressions for the parameters in
fraction up to third order are given in terms of the mat
elements of powers of the Liouville operator,Ln up to n
55, between the starting vector. In Sec. II C, we discuss
necessity to divide the whole line space into two subspa
involving the positive and negative resonance lines, resp
tively, and to express the trace of the internal degrees
sum of two corresponding continued fractions. Ignoring
Liouville operator for the interaction potential,L1 , we ob-
tain explicit results for the parameters in the fractions a
find that there is no millimeter wave continuum. In Sec. II
we consider the matrix element ofL1 in the subspace con
structed by the positive resonance lines. By introducing
coordinate representation, we can write this as a n
dimensional integral over the angular degrees of freedom
the pair before and after the transition. However, from sy
metry, this matrix element is zero; thus, to get finite con
butions one has to consider higher powers ofL([La

1L1). The latter is the most time-consuming computation
the present study and the details of how these are calcu
or approximated are given in Sec. II E. Then, using th
results one can easily obtain the two continued fractio
From these the poles and residues can be determined, an
procedure is discussed in Sec. II F. In Sec. II G, the trace o
the translational degrees is treated classically as an ense
average over the separationr between the two molecules
Downloaded 29 Nov 2002 to 130.160.100.104. Redistribution subject to 
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and this yields contributions to the absorption coefficients
the poles. An interpolation scheme is discussed, which
ables us to calculate the absorption coefficient at any
quency of interest. In Sec. II H, we discuss the model for
interaction potential used. The anisotropic part of this pot
tial is assumed to have rotational symmetry about theZ axis
of H2O, and consists of the long-range dipole–quadrup
part and a short-range repulsive site–site model. The iso
pic part of the interaction potential necessary to carry out
ensemble average over the translational coordinater, is mod-
eled by a Lennard-Jones, and numerical parameters
given. In Sec. II I, we present the numerical results for t
absorption coefficient,a( f ), in units of dB/km, as a function
of frequencyf in GHz for several temperatures. We derive
simple fitting formula for the theoretical results and discu
the comparisons with experimental data and with the wid
used MPM899 and MPM9310 empirical models, two versions
of the millimeter wave propagation model developed
Liebe.

In Sec. III, we first discuss the meaning of the results
the millimeter wave absorption obtained from the Lancz
method. The possible importance of CIA is discussed brie
but we show that one is able to explain this continuum w
without relying on appreciable CIA. We compare the Lan
zos method with the far-wing line shape theory, and althou
they arise from the same physical mechanism, they use
ferent methods to account for contributions to the absorp
and are subjected to different limitations. The latter wor
well to predict absorptions in the infrared spectral region,
the former is more applicable in the millimeter wave regio
We conclude by discussing some possible improvements
extensions of the present results, including a more gen
interaction potential without the assumption of cyclic coo
dinates, and the inclusion of higher-order terms in the c
tinued fractions. While these refinements are possible,
feel that it is first necessary to test how well the pres
theoretical formula works in atmospheric applications.

II. THE GENERAL FORMALISM

A. The absorption coefficient and spectral density

As is well known, the absorption of radiation at fre
quencyv ~cm21! per unit volume of a gaseous sample
thermal equilibrium at temperatureT is characterized by the
absorption coefficienta~v!:

a~v!5
4p2

3\c
v~eb\v21!F~v!. ~1!

The spectral densityF(v) is the Fourier transform of the
correlation functionC(t) of the dipole moment operator; tha
is,

F~v!5
1

p
ReE

0

`

eivtC~ t !dt, ~2!

and

C~ t !5Tr~m†e2 iHtrmeiHt !, ~3!

wherem is the dipole moment operator of the sample andr
is the density matrix. Then,F(v) can be given by
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F~v!52
1

p
Im TrS m†

1

v2L rmD ,

or alternatively by11

F~v!52
1

p
Im TrS m†Ar

1

v2L ArmD , ~4!

which is preferable to pursue our further study. In these
pressions, the Liouville operatorL associated with the tota
HamiltonianH is defined as

LA[HA2AH, ~5!

whereA is an arbitrary operator in Hilbert space.
In the present study, we only consider low-pressure ca

in which both the water vapor density and the nitrogen bu
density are low. Based on the binary collision approximati
one can further focus on a single H2O–N2 pair and neglect
its correlation with others. As a result, the absorption coe
cient a~v! of the whole gas sample can be expressed as

a~v!5
4p2

3\c
npairv~eb\v21!F~v!, ~6!

wherenpair is the number density of pairs and it is propo
tional to the product of the pressures of H2O and N2; F(v)
is the spectral density of the pair whose expressions are
same as Eqs.~2! and ~4!, except all the quantities belong t
the pair only. For simplicity, we do not introduce new sym
bols for the two-molecule system. For later convenience,
Liouville operatorL can be expressed as the sum of its co
ponents:

L5La1Lb1L1 , ~7!

corresponding to the unperturbed H2O molecule, the unper
turbed N2, and the anisotropic interaction between H2O and
N2. We note that because the isotropic interactionViso(r )
commutes with all other operators, one can excludeViso(r )
from L1 . Based on the same reason, one can m
r iso@5exp(2bViso(r ))# introduced later anywhere in th
trace.

In the present study, the frequencies of interest are on
few cm21, which are much smaller than the strong resona
line frequencies. As shown later, during collision process
the anisotropic interaction can cause millimeter wave c
tinuum absorptions when H2O and N2 have separations be
tween 3.4 and 5 Å. It is well known that at this range, t
whole interaction is rather weak and the anisotropic par
even weaker. Therefore, one can conclude that for case
interest here not onlyViso(r ),Ha , but alsoVani(r ),Ha .
We note that, based on the latter, we can draw another
clusion thatL1,La , which will be used in our later discus
sions. Then, we can introduce the approximationr
.rarbr iso in Eq. ~4! and, in addition, we can exclude th
component Lb from L because Hb commutes with
Ararbr isom. By dividing all degrees of freedom of the tw
interacting molecules into internal and translational degre
we rewrite the expression forF(v) as
Downloaded 29 Nov 2002 to 130.160.100.104. Redistribution subject to 
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F~v!52
1

p
Im Trr H r isoTrabS m†Ararb

1

v2L ArarbmD J .

~8!

In the above expression, the trace operator Trab is over the
internal degrees and the trace operator Trr is over the trans-
lational degrees. It turns out that to carry out Trab is much
more difficult than Trr . Therefore, we focus our attentio
on Trab first and apply the Lanczos algorithm to solve t
problem.

B. Lanczos algorithm

It is well known that the Lanczos algorithm is a usef
technique in molecular dynamics. We do not describe t
method in detail here; rather the reader is referred to
review by Moro and Freed, and references therein.12 In line
space, the Liouville operatorL and therefore the resolven
operator (v2L)21 are matrix operators; ordinary~in Hilbert
space! operators~for instance,Ararbm) are vectors. One be
gins by defining a starting vector~in line space!,

u1&5uv&/A^vuv&, ~9!

whereuv&[uArarbm&, and from this, one generates a com
plete set of basis vectors (u1&,u2&,...,un&,....) according to

b2u2&5~12P1!Lu1&,

b3u3&5~12P2!Lu2&,
~10!

¯

bnun&5~12Pn21!Lun21&.

In these expressions,Pn are the projection operators,

Pn5(
i 51

n

u i &^ i u, ~11!

and the quantitiesbn are determined from the normalizatio
requirement (̂nun&51); these are given by

bn5^nuLun21&, for n.1. ~12!

The matrix representation ofL in line space given in the
complete basis~u1&, u2&,...! has the symmetric tridiagona
form whose off-diagonal elements arebn (n51,2,...) and
whose diagonal elements,an (n51,2,...), are given by

an5^nuLun&. ~13!

Then, one can write the inner trace ofF(v) in terms of a
continued fraction,6

TrabS m†Ararb

1

v2L ArarbmD
5 K vU 1

v2LUv L 5^vuv&
1

v2a12
b2

2

v2a22
b3

2

v2a32¯

.

~14!

It is worth mentioning that all quantitieŝvuv&, an , andbn

appearing in the continued fraction expression are matrix
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ements. However, except for^vuv&, their values can vary
BecauseL1 depends on the separationr between the two
molecules,an andbn depend onr also. As shown later, the
translational motion of two molecules can be treated cla
cally; thus, one can considerr as a parameter here.

The continued fraction expression forF(v) is the start-
ing formula to carry out numerical calculations. In practic
one has to introduce a cutoff in Eq.~14! to limit fractions
included and to make sure results obtained accordingly
converged. A simple convergence criterion is the requirem

bn
2!an21an , for n.1. ~15!

The expressions foran and bn
2 appearing explicitly in Eq.

~14! can be given in terms of matrix elements ofL and its
powers between the starting vectoru1&,

a15^1uLu1&,

b2
25^1uL2u1&2a1

2,

a25
1

b2
2 ~^1uL3u1&22a1^1uL2u1&1a1

3!, ~16!

b3
25

1

b2
2 ~^1uL4u1&22a1^1uL3u1&1a1

2^1uL2u1&!

2a2
22b2

2,

a35
1

b3
2 H a2

322^1uL3u1&12a1^1uL2u1&1~a112a2!b2
2

1
1

b2
2 @^1uL5u1&22~a11a2!^1uL4u1&

1a1~a114a2!^1uL3u1&22a1
2a2^1uL2u1&#J ,

etc. As shown by Eq.~16!, when the lowest-order cutoff is
chosen, the continued fraction becomes simply (v2a1)21

and there is only one matrix element^1uLu1& required. For the
next cutoff, one needs to calculatea1 , b2

2, and a2 . This
implies that one needs to knoŵ1uL2u1& and ^1uL3u1& as
well. If one goes one step further,b3

2 anda3 are needed and
two additional matrix elementŝ1uL4u1& and ^1uL5u1& are
required. BecauseLa is the dominant part ofL, we can cal-
culate the matrix elements^1uLa

nu1& with n51,2,..., first and
treat contributions fromL1 as corrections. We note that th
former are independent of the parameterr while the latter are
functions ofr.

C. Two starting vectors and the matrix elements of La
n

As a guide to go further, it is wise to do a simple te
first. By neglecting contributions fromL1 , we can easily
evaluatea1 , b2

2, a2 , b3
2, anda3 which are just five num-

bers. However, it turns out that the magnitudes ofa1 , a2 ,
anda3 are so small that they cause a failure of the conv
gence criterion, Eq.~15!. It is the cancellation between pos
tive resonance lines of H2O and negative resonance ones th
reduces their magnitudes significantly. Therefore, in orde
guarantee the convergence, one can divideuv& ~i.e.,
uArarbm&) into two parts:uv&1 associated with the positiv
Downloaded 29 Nov 2002 to 130.160.100.104. Redistribution subject to 
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The physical meaning of this division is to separate an av
age over the whole band of H2O into two averages: one ove
the positive resonance lines and the other over the nega
resonance ones.

Based on this, we introduce two independent start
vectors:u1&1 and u1&2 . BecauseLa , the dominant compo-
nent of L, does not mixu1&1 and u1&2 and, in general,
energy gaps between two components belonging tou1&1 and
u1&2 , respectively, are larger than those withinu1&1 or
within u1&2 , we expect that the coupling between them c
be ignored in the calculations. Then, the inner trace ofF(v)
can be expressed as a sum over two terms:

TrabS m†Ararb

1

v2L ArarbmD
51^vu

1

v2L uv&112^vu
1

v2L uv&2 . ~17!

By following the same procedure as described above, we
rewrite each term as a continued fraction as in Eq.~14!.
Accordingly, there are two independent sets ofan andbn

2 to
be evaluated. For simplicity, we do not introduce new sy
bols for quantities associated withuv&1 and uv&2 . In addi-
tion, due to their similarity, it is unnecessary to repeat d
cussions for each case. We will only present formu
applicable foruv&1 and simply mention differences betwee
uv&1 and uv&2 .

The expression of the line space vectoruv&1 is given by

uv&15(
j tm

(
j 8t8m8

(
ln

$Agtgle
2b@E~ j ,t!1E~ l !#/2

3^ j tmumu j 8t8m8&/AQaQb% u j tmln&^ ln j 8t8m8u,

~18!

whereu j tmln& is a simple notation foru j tm& ^ u ln&, gt and
gl are the nuclear spin degeneracy factors for H2O and N2,
Qa and Qb are the partition functions of H2O and N2, re-
spectively, and the summation overj 8 andt8 is limited to a
range withE( j 8,t8),E( j ,t). We note that we have ignore
contributions from vibrational bands of H2O because they
are not only weaker than the pure-rotational band, but a
are farther away from the millimeter spectral region. We
troduce a normalization constantM 1 , defined by

M 15(
j t

(
$ j 8t8%1

~2 j 11!gte
2bE~ j ,t!umj t; j 8t8u

2/Qa ,

~19!

where the summation overj 8 andt8 indicated by a symbol
$ j 8t8%1 is limited to a range withE( j 8,t8),E( j ,t). In the
above expression,mj t; j 8t8, which are associated with the re
duced dipole matrix elements, but exclude the magnitudm
of the dipole operator of H2O, are given in the body-fixed
frame of H2O in which the dipole moment lies along itsZ
axis ~i.e., theII r representation! by
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mj t; j 8t85A~2 j 811!/~2 j 11!(
k

Ukt
j Ukt8

j 8 C~ j 81 j ,k0k!,

~20!

where C( j 81 j ,k0k) is a Clebsch–Gordan coefficient;Ukt
j

results from expressingu j tm&, the wave functions of H2O,
in terms of an expansion of symmetric-top wave functio
u jkm&, viz.,

u j tm&5(
k

Ukt
j u jkm&. ~21!

It is obvious that1^vuv&15m2M 1 . It is easy to derive ex-
pressions for1^1uLa

nu1&1 which are given by

1^1uLa
nu1&15

1

M 1
(
j t

(
$ j 8t8%1

~2 j 11!gte
2bE~ j ,t!

3umj t; j 8t8u
2$E~ j ,t!2E~ j 8,t8!%n/Qa . ~22!

We note that the expressions for1^1uLa
nu1&1 are completely

independent of N2 .
We include all H2O states up toJmax526 in our numeri-

cal calculations. We calculateM 1 from Eq. ~19! and the
matrix elements1^1uLa

nu1&1 from Eq. ~22! for T5296 K.
The former’s value is 0.374 900 and the latter’s values
95.1928 cm21, 126 80.7 cm22, 2.165 273106 cm23,
4.468 503108 cm24, and 1.071 0631011cm25 for n51, 2,
3, 4, and 5, respectively. Accordingly, we obtaina1

595.1928 cm21, b2
253619.05 cm22, a25169.562 cm21,

b3
258944.98 cm22, anda35226.850 cm21. Based on these

values, it is easy to check that the convergence criterio
satisfied because b2

2/(a1a2)50.224 and b3
2/(a2a3)

50.233.
We also calculate quantities associated with the star

vector u1&2 from formulas similar to Eqs.~18!, ~19!, and
~22!, respectively, except the summations are carried
with E( j 8,t8).E( j ,t). The value of M 2 obtained is
0.625 100 and the values of the matrix elements2^1uLa

nu1&2

with n51, 2, 3, 4, and 5 are2116.535 cm21, 18 878.2
cm22, 23.871 093106 cm23, 9.484 213108 cm24, and
22.683 7631011cm25, respectively. The corresponding va
ues of an and bn

2 are a152116.535 cm21, b2
255297.76

cm22, a252198.902 cm21, b3
2512 250.93 cm22, anda3

52276.662 cm21. Finally, the convergence check yield
b2

2/(a1a2)50.229 andb3
2/(a2a3)50.223, respectively.

Based on these values, explicit expressions forF(v) in
terms of the two continued fractions are known. Then, o
can easily find the poles of the fractions on thev axis. For
the lowest-order cut-off, there are two poles:v595.1928
cm21 andv52116.535 cm21, one from each of the contin
ued fractions, respectively. For the next order, there are
poles: v561.6543 cm21, 203.100 cm21 and v5274.0896
cm21, 2241.348 cm21 associated withu1&1 and u1&2 , re-
spectively. Then, for the next higher order shown explici
in Eq. ~14!, there are six poles:v546.1918, 141.861, and
303.552 cm21 andv5255.9511,2173.407, and2362.742
cm21, respectively. Because there is no pole within the m
limeter spectral region, it seems that without considering
interaction between H2O and N2, there are no local line
absorptions in this region at all. Clearly, the above statem
Downloaded 29 Nov 2002 to 130.160.100.104. Redistribution subject to 
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is not correct because there are a few relatively weak li
there. But, given the fact that most lines of the pure ro
tional band are located beyond the millimeter spectral reg
and that results from the Lanczos algorithm represent a
aged effects mainly over these lines, our finding is cons
tent. This also indicates that it is the anisotropic interact
that plays a crucial role in causing the millimeter wave a
sorption.

By comparing the values of the poles given above, it
obvious that those associated withu1&1 and those withu1&2

are not symmetrically located about the origin of thev axis.
As shown by Fig. 5 presented later, the same finding rem
true when contributions fromL1 are included. This asymme
try results from the procedure used here to introduceuv&1

and uv&2 with which the original vectoruv& is not evenly
divided between them. It is worth mentioning that one c
start from the symmetric correlation functionC̃(t)[C(t
1 ib\/2), which has the symmetry ofC̃(t)5C̃(2t) and fol-
lows the same procedures presented here, including intro
ing a new vectoruv& and its two evenly divided componen
uv&1 anduv&2 . We expect that the poles associated with t
new starting vectorsu1&1 and u1&2 will be symmetrically
distributed along thev axis.

D. Matrix element ¿Š1zL1z1‹¿

Up to this stage, we have not faced serious obstacles
we have not achieved substantial progress either. In cont
the next step, i.e., to calculate matrix elements involvingL1 ,
becomes a big challenge. From the following analyses,
can understand why. First of all, let us consider the calcu
tion of 1^1uL1u1&1 , which can be explicitly expressed i
terms of Hilbert operators as

1^1uL1u1&1

5
1

M 1
^ j tmum†Arau j 8t8m8&

3^ j 8t8m8lnurbVaniAram2rbAramVaniu j tmln&,

~23!

where repeated indicesj, t, m, j 8, t8, m8, l, andn mean a
summation over them, and there is a range limitation w
E( j 8,t8),E( j ,t) here. As shown by Eq.~23!, many matrix
elements ofVani between states of a H2O–N2 pair are re-
quired, and the number is very large if most of the popula
states are taken into account. Of course, to evaluate t
matrix elements is possible, but it requires a lot of wo
unlessVani has a very simple form. Usually one has to e
press Vani in terms of an expansion of the product

Dm9k9
j 9 (a,b,g) andYl 9n9(u,w) first, where the angular argu

ments represent orientations of H2O and N2, respectively.
Then, one has to calculate matrix elements for each com
nent and add the results obtained. In general, there are
of components in the expansion because the number of
sible combination ofj 9, m9, k9, l 9, andn9 is large. Unfor-
tunately, the evaluation of1^1uL1u1&1 does not help us too
much. As shown later, one has to go further to calcul
matrix elements of operators that contain powers ofL1 . This
implies that quantities likeVani

2 appear in the calculations. I
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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one follows the usual procedure mentioned above, the ca
lation is intractable. This is one reason why, even for such
important problem, there has been little progress.

Recently, we have made progress in solving the prob
of convergence in far-wing line shape calculations. We
plain the problem and our solution briefly here. In order
calculate converged results, one has to include most of
populated states in calculations. However, as more state
included, the size of the interaction potential matrix, which
an off-diagonal operator, increases very fast and rapidly
ceeds the computer limitation to handle a diagonalizat
procedure.7 As a result, to obtain converged results was d
ficult, in practice. The breakthrough arose from the idea t
instead of choosing the internal states as the basis se
Hilbert space, one can select the orientations of the pai
molecules as the basis set.7 By introducing this coordinate
representation, interactions are diagonal. As a result, sum
tions over states become multidimensional integrations o
the continuous angular variables and as many states a
sired can be included in the calculations. The converge
criterion is transformed to the feasibility of calculating the
integrations. As demonstrated in our study,3 using the Monte
Carlo method one is able to calculate up to 11-dimensio
integrations required for the most complicated pair cons
ing of two asymmetric top molecules. The calculations of
an andbn

2 in the Lanczos algorithm are perfect candidates
apply our new method. In fact, the main computational ta
here are to evaluate matrix elements. With the coordin
representation, the job is transformed to multidimensio
integrations, and with the Monte Carlo method, the latter
be successfully carried out. In addition, no matter how co
plicatedVani is and no matter how many powers ofVani ap-
pear, to calculate matrix elements is simple because in
coordinate representation, the integrands are just ordin
functions. It is these two powerful tools that enable us
make progress.

We adopt the simplifying notation thatVz is used to
represent the orientation of the molecule of interest. For N2 ,
Vz corresponds touz and wz ; for H2O, it corresponds to
az , bz , andgz . Then, we can express the basis functionuz&
representing a specified orientation of the pair labeled byz as

uz&5ud~Va2Vaz!d~Vb2Vbz!&. ~24!

We note that these basis functions are eigenfunctions ofVani,

Vani~r ,Va ,Vb!uz&5Vani~r ,Vaz ,Vbz!uz&, ~25!

where Vani(r ,Vaz ,Vbz) are the eigenvalues and they a
simply values ofVani at positions of the pair specified byr,
Vaz , andVbz . For simplicity,Vani(r ,Vaz ,Vbz) will be de-
noted asVani(z). In terms of this basis set, one is able
rewrite 1^1uL1u1&1 as

1^1uL1u1&15
1

M 1
E E u^zuArarbm1uh&u2

3@Vani~z!2Vani~h!#dVz dVh , ~26!

wheredVz denotes the volume element and the subscrip1
of m1 implies that its components lie in a subspace c
structed by the positive resonance lines only. We note tha
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the coordinate representationArarb is off-diagonal but the
dipole momentm is diagonal. However, because the positi
resonance componentsm1 and the negative onesm2 are
distinguished here, one has to treatm1 and m2 as off-
diagonal operators.

Because the pair has a rotational symmetry, the dim
sionality of Eq.~26! can always be reduced by one. Ther
fore, 1^1uL1u1&1 is a nine-dimensional integration whos
integrand consists of two factors:u^zuArarbm1uh&u2 and
@Vani(z)2Vani(h)#. The first factor is constructed from th
density matrices for H2O and N2:

u^zuArarbm1uh&u2

5u^d~Va2Vaz!uAram1ud~Va2Vah!&u2

3u^d~Vb2Vbz!uArbud~Vb2Vbh!&u2. ~27!

For the linear molecule N2 , we have shown that7,8

u^d~Vb2Vbz!uArbud~Vb2Vbh!&u2

5(
L

BLPL~cosQb~zh!!, ~28!

where PL(cosQb(zh)) are Legendre polynomials withL
50,1,2,..., andQb(zh) is the angle betweenVbz and Vbh ,
viz.,

cosQb~zh!5cosubz cosubh1sinubz sinubh cos~wbz2wbh!.
~29!

The coefficientsBL are given by

BL5
1

16p2Qb
(
l l 8

~2l 11!~2l 811!

3Aglgl 8e
2b@E~ l !1E~ l 8!#/2C2~ l l 8L,000!. ~30!

It is obvious that the density matrix for N2 is a one-
dimensional distribution whose argument is the angle
tween the initial and final orientations of N2 . The profile of
the absolute square of the density matrix for N2 calculated
from Eqs.~28! and ~30! has been discussed in our previo
study7 and will not be repeated here. On the other ha
because H2O is an asymmetric top molecule, one expe
that u^d(Va2Vaz)uAram1ud(Va2Vah)&u2 is a three-
dimensional distribution whose arguments are three E
angles representing rotations between the initial and fi
orientations of H2O.

As shown in our previous study,3 if one uses a high
cutoff such asJmax526, to calculate this distribution require
a lot of CPU time, but is still feasible. However, if the inte
action potential model used for the calculations in Eq.~26!
contains cyclic coordinates, the three-dimensional distri
tions are reduced to an ‘‘averaged’’ one-dimensional dis
bution that can be obtained more easily and, in addition,
nine-dimensional integrations in Eq.~26! are reduced to
seven-dimensional ones.8 As a result, one is able to reduc
the difficulty of calculating matrix elements dramaticall
Given the fact that there are several other matrix eleme
required, to limit CPU time we will assume that the potent
model for Vani(r ,Va ,Vb) contains cyclic coordinates. Thi
assumption can be justified by the following argument. F
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of all, the leading long-range dipole–quadrupole interact
of H2O–N2 has rotational symmetry about theZ axis of H2O
because in theII r representation, the dipole moment is alo
this direction. This term dominates other higher-order ter
since the H2O molecule has a large dipole moment. The
fore, the long-range part ofVani(r ,Va ,Vb) is approximately
independent of the Euler angleg of H2O. Second, as show
later, it is the long-range part not the short-range part
Vani(r ,Va ,Vb) that plays a crucial role in the millimete
wave continuum absorption. Therefore, one can concl
that this assumption aboutVani(r ,Va ,Vb) is a good approxi-
mation in the present calculations. One can thus perfor
two-dimensional integration overgaz and gah first. In fact,
the procedure involves the density matrixu^d(Va

2Vaz)uAram1ud(Va2Vah)&u2 only. It turns out that by us-
ing the fact that

E
0

2p

Dmk
j ~a,b,g!dg52pdk0Dm0

j ~a,b!, ~31!

wheredk0 is the Kronecker symbol, one is able to carry o
this integration analytically and obtain

E
0

2pE
0

2p

u^d~Va2Vaz!uAram1ud~Va2Vah!&u2 dgaz dgah

5(
L

ALPL~cosQa~zh!!, ~32!

whereL50,1,2,...., andQa(zh) is the angle between the in
tial and final directions of theZ axis of a body-fixed frame
for H2O; this expression is similar to that for N2 given in Eq.
~28!. The coefficientsAL introduced in the above expressio
are defined by

AL5
1

16p2Qa
~21!11L(

j 1t1
(
j 2t2

(
$ j 18t18%1

(
$ j 28t28%1

~21! j 11 j 2

3~2 j 111!~2 j 211!A~2 j 1811!~2 j 2811!

3Agt1
gt2

e2b@E~ j 1 ,t1!1E~ j 2 ,t2!#/2

3W~ j 28 j 2 j 18 j 1,1L !mj 1t1 ; j
18t

18
mj 2t2 ; j

28t
28

3H(
k

~21!kUkt1

j 1 Ukt2

j 2 C~ j 1 j 2L,k2k0!J
3H(

k8
~21!k8U

k8t
18

j 18 U
k8t

28

j 28 C~ j 18 j 28L,k82k80!J , ~33!

whereW( j 28 j 2 j 18 j 1,1L) is a Racah coefficient, and$ j 18t18%1

and$ j 28t28%1 indicate the summations overj 18 , t18 and j 28 , t28
are limited to E( j 18 ,t18),E( j 1 ,t1) and E( j 28 ,t28)
,E( j 2 ,t2), respectively. By comparing Eqs.~33! and ~30!,
it is obvious that the expression forAL associated with the
‘‘averaged’’ density matrix of H2O is more complicated than
BL for N2 . Fortunately, there are not too manyAL to evalu-
ate. In fact, if one choosesJmax526, the number ofAL is 53.
However, before we carry out numerical calculations for
‘‘averaged’’ density matrix of H2O, we can first draw a con
clusion about1^1uL1u1&1 . Because the integrand in Eq
~26! is antisymmetric with respect toz and h, the value of
Downloaded 29 Nov 2002 to 130.160.100.104. Redistribution subject to 
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1^1uL1u1&1 is zero. Combining this fact with those derive
in the last section, we can conclude that in order to calcu
the millimeter wave continuum absorption for H2O–N2, one
must consider a higher-order cutoff for the continued fract
because there are no contributions from the simplest appr
mation (v2a1)21.

E. Matrix elements of Ln

As mentioned before, one big advantage resulting fr
the coordinate representation is that derivations of exp
sions for matrix elements involving powers ofL1

n with n
.1 do not cause much more difficulty than for1^1uL1u1&1 .
First of all, let us consider the matrix element1^1uL2u1&1

which consists of four terms:

1^1uL2u1&151^1uLa
2u1&111^1uL1Lau1&1

11^1uLaL1u1&111^1uL1
2u1&1 . ~34!

The first term is already known. In the following, unle
necessary for clarity, we will adopt a convention that r
peated integration variables imply integrations over them
we will omit the integration symbol. The second term can
expressed as

1^1uL1Lau1&15
1

M 1
^hum1

† Ararbuz&^zuLaArarbm1uh&

3@Vani~z!2Vani~h!#, ~35!

which is very similar to that for1^1uL1u1&1 , except there is
an extra Liouville operatorLa appearing in the density ma
trix of H2O. With the same procedure as before, we c
carry out integrations of ^d(Va2Vah)um1

† Arau^d(Va

2Vaz)&^d(Va2Vaz)uLaAram1ud(Va2Vah)& over gaz

and gah first and introduce the corresponding ‘‘average
density matrix of H2O. It turns out that the latter is anothe
one-dimensional distribution whose argument isQa(zh) .
Hence, we do not need to go further and can simply concl
that 1^1uL1Lau1&150. Similarly, we can conclude tha

1^1uLaL1u1&150 also. Therefore, there is only one ne
nonzero term1^1uL1

2u1&1 in 1^1uL2u1&1 . One can easily
write down the expression for1^1uL1

2u1&1 without any more
algebraic work. In fact, the expression for1^1uL1

2u1&1 is the
same as that for1^1uL1u1&1 given by Eq.~26!, except for a
replacement of@Vani(z)2Vani(h)# by @Vani(z)2Vani(h)#2:

1^1uL1
2u1&15

1

M 1
u^zuArarbm1uh&u2@Vani~z!2Vani~h!#2.

~36!

The values of1^1uL1
2u1&1 can be evaluated in two step

First, we calculate the density matrix of N2 at T5296 K and
the ‘‘averaged’’ density matrix of H2O at T5296 K from
Eqs. ~28! and ~32!, respectively. The results for the forme
which has been mentioned in Sec. II D, are presented in
1 and the latter in Fig. 2 together with the correspond
results associated withu1&2. Using the Monte Carlo method
we carry out the seven-dimensional integrations in which
integrand is@Vani(z)2Vani(h)#2 and the product of the two
distributions is the weighting function. BecauseVani is a
function ofr, the value of the seven-dimensional integratio
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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depends onr too. In practice, we select 80 values ofr that
span the interaction range and calculate the correspon

1^1uL1
2u1&1 for each specifiedr. In order to make sure tha

results obtained are reliable, we calculate a normaliza
constant of the weighting function simultaneously by sett
the integrand equal to 1. The constant should be clos
16p2AL50 . Otherwise, it indicates that the matrix elemen
are not reliable. This procedure is carried out for all integ
tions. In general, all the calculations take several hours
CPU on a workstation. A detailed discussion about how
apply the Monte Carlo method to perform multidimension
integrations whose weighting functions have similar patte
as those in the present study has been reported previou3

and we do not repeat it here.
Now let us consider the matrix element of1^1uL3u1&1

which contains eight terms. According to the powers ofL1 ,
the latter are catalogued into four groups:

1^1uL3u1&151^1uLa
3u1&1

11^1uL1La
21La

2L11LaL1Lau1&1

11^1uL1
2La1LaL1

21L1LaL1u1&1

11^1uL1
3u1&1 . ~37!

Among them, only the third group needs to be evalua
because the first one1^1uLa

3u1&1 is already known and
similar to 1^1uL1La1LaL1u1&1 , we can conclude that th
second and the fourth groups are zero. With respect to
third, we have to calculate1^1uL1

2La1LaL1
2u1&1 and

1^1uL1LaL1u1&1 separately. The former can be expressed

FIG. 1. The absolute square of the density matrix of N2 given in the coor-
dinate representation calculated atT5296 K for Jmax580.
Downloaded 29 Nov 2002 to 130.160.100.104. Redistribution subject to 
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1^1uL1
2La1LaL1

2u1&1

5
1

M 1
$^hum1

† Ararbuz&^zuLaArarbm1uh&

1^hu~LaArarbm1!†uz&^zuArarbm1uh&%

3@Vani~z!2Vani~h!#2. ~38!

Analogous to Eq.~36!, 1^1uL1
2La1LaL1

2u1&1 is a seven-
dimensional integration of@Vani(z)2Vani(h)#2, with the first
factor in Eq.~38! serving as the weighting function. This is
product of two distributions: the first associated with N2 is
the same as before, and the one associated with H2O has to
be calculated. It is easy to show that the latter can be
pressed by formulas similar to those derived previously
^hum1

† Arauz&^zuAram1uh&(5u^zuAram1uh&u2) shown by
Eqs.~32! and~33!. The only difference is that it comes from
a new set of coefficientsAL whose expression is almost th
same as Eq~33!, except that an extra factor@E( j 1 ,t1)
2E( j 18 ,t18)#1@E( j 2 ,t2)2E( j 28 ,t28)# is inserted inside the
summation loops over the indicesj 1 , t1 , j 18 , t18 , j 2 , t2 , j 28 ,
and t28 . The distributions associated with1^1uL1

2La

1LaL1
2u1&1 and2^1uL1

2La1LaL1
2u1&2 are presented in Fig

3. Finally, we note that the CPU time for calculatin

1^1uL1
2La1LaL1

2u1&1 is the same as for1^1uL1
2u1&1 .

Now, we focus our attention on1^1uL1LaL1u1&1 whose
explicit expression requires more algebraic work because
two L1 are separated by oneLa here. One can write

1^1uL1LaL1u1&1 as a summation of three terms:

FIG. 2. The one-dimensional distributions of the density matrix of H2O at
T5296 K for Jmax526. The solid and dotted lines are associated withu1&1

and u1&2 , respectively.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1^1uL1LaL1u1&152
1

M 1
$^hum1

† Ararbuz&^zuLaArarbm1uh&1^hu~LaArarbm1!†uz&^zuArarbm1uh&%Vani~z!Vani~h!

1
1

M 1
^hurbm1

† Haram12rbAram1Ham1
† Arauh&Vani~h!2

1
1

M 1
^hurbAram1m1

† Ara2rbm1
† ram1uz&^zuHauh&Vani~z!Vani~h!, ~39!
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and all of them are multidimensional integrations. By co
paring the first term with Eq.~38!, it is clear that its expres
sion is almost the same as that for1^1uL1

2La1LaL1
2u1&1 ,

except that the integrand becomesVani(z)Vani(h). By using
the same weighting function derived for1^1uL1

2La

1LaL1
2u1&1 , one can carry out the seven-dimensional in

grations ofVani(z)Vani(h) and obtain values for this term.
With respect to the second term of Eq.~39!, it is given in

terms of four-dimensional integrations ofVani(h)2 over h
with an associated weighting function. As before, th
weighting function is a product of two factors: one asso
ated with N2 and one with H2O. The former is given by
^d(Vb2Vbh)urbud(Vb2Vbh)& and is simply the constan
1/4p. With some algebraic work, one can show that the la
is 1^vuLauv&1/4p, which is known. Then, the weighting
function becomes1^vuLauv&1/16p2 and is independent o

FIG. 3. The one-dimensional distributions of H2O obtained atT5296 K for
Jmax526, which are the weighting functions used to evaluate the ma
elements1^1uL1

2La1LaL1
2u1&1 and 2^1uL1

2La1LaL1
2u1&2 and are repre-

sented by the solid and dotted curves, respectively. Because the values
latter are negative at small angles, we use a thin line to plot its abso
magnitude.
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h. As a result, we can conclude that the second term in
~39! is given by

1

M 1
^hurbm1

† Haram12rbAram1Ham1
† Arauh&Vani~h!2

51^1uLau1&1Vani
2 , ~40!

where the notationVani
2 is introduced to represent an avera

of Vani(h)2 over h. Of course,Vani
2 is a function ofr.

Similarly, the third term is given in terms of integration
of Vani(z)Vani(h) over z and h with a different weighting
function, which is a product of two distributions. Using th
well-known formula

1

4p (
L50

`

~2L11!PL~x!5d~x!, ~41!

it is easy to show that the distribution associated with2
becomes a Dirac delta functiond(Vbz2Vbh) when the
number of states of N2 included goes to infinity. This enable
us to carry out part of the integration analytically and redu
the dimensionality of the remaining one by 2. On the oth
hand, there is no difficulty to derive the distribution for H2O
that is plotted in Fig. 4 together with its partner derived f
u1&2 . As shown in the figure, the distributions oscilla
wildly and, in fact, the numbers of oscillations are equal
Jmax/2. Therefore, one must be careful in these calculati
because this kind of behavior could cause big errors w
one evaluates the integrations ofVani(j)Vani(h). In order to
make sure that the results obtained are reliable, we us
alternative way to carry out the calculation. We introduce
reasonable approximation forVaniHaVani by ignoring the
higher-order commutator term,

VaniHaVani5~Vani
2 Ha1HaVani

2 !/21†Vani,@Ha ,Vani#‡

.~Vani
2 Ha1HaVani

2 !/2. ~42!

Then, one is able to show that the approximate third te
is equal to1^1uLau1&1Vani

2 . Numerical tests show that dif
ferences between these two results are less than 1%. T
we can conclude that we can calculate1^1uL1LaL1u1&1 ac-
curately. We note that by comparing the valu
of 1^1uL1LaL1u1&1 with those of1^1uL1

2La1LaL1
2u1&1 , it

seems that the former is about half of the latter. This obs
vation will be used later.

We will not present detailed discussions f

1^1uL4u1&1 , which consists of 16 terms. Among them, w
already know the value of1^1uLa

4u1&1 , and four other terms
containing one L1 operator are zero. With respect t
six terms containing twoL1 operators, we group them
into two groups: 1^1uLa

2L1
21L1

2La
21LaL1

2Lau1&1 and

x
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1^1uLaL1LaL11L1LaL1La1L1La
2L1u1&1 . For the former,

using the same method as that used in calcula

1^1uL1
2La1LaL1

2u1&1 , we are able to obtain the values. F
the latter, as expected, problems similar to what happene

1^1uL1LaL1u1&1 occur, but the situation becomes ev
worse. The most severe trouble results from the oper
L1La

2L1 , where twoL1 are separated byLa
2. The corre-

sponding weighting function oscillates so wildly that one
not able to obtain reliable integration values at all. In t
present study, we simply estimate1^1uL1La

2L1u1&1 by using
the observation found above. We assume that the value

1^1uL1La
2L1u1&1 are equal to half of 1^1uLaL1LaL1

1L1LaL1Lau1&1 because the former contains one term a
the latter contains two terms. Concerning the remaining
terms associated withLaL1

3, L1
3La , L1LaL1

2, L1
2LaL1 , and

L1
4, the first two are zero, and we will ignore the othe

because for case of interest hereL1,La and, in comparison
with those terms that have been taken into account, th
terms are higher-order corrections.

Similarly, there are 32 terms in1^1uL5u1&1 . We already
know 1^1uLa

5u1&1 and five zero terms containing on
L1 . Again, we group ten terms containing twoL1

operators into two categories:1^1uLa
3L1

21L1
2La

31La
2L1

2La

1LaL1
2La

2u1&1 and 1^1uLaL1LaL1La1La
2L1LaL1

1L1LaL1La
21L1La

2L1La1LaL1La
2L11L1La

3L1u1&1 . We
calculate the first group. With respect to the second gro
we calculate the first three terms and estimate the remai

FIG. 4. The one-dimensional distributions of H2O obtained atT5296 K for
Jmax526, which are used to evaluate parts of the matrix eleme

1^1uL1LaL1u1&1 and2^1uL1LaL1u1&2 , respectively. The former~the solid
line! is derived from the third term of Eq.~39!. The latter~the dotted line! is
its partner. As shown in the figure, each of them oscillates 13 (5Jmax/2)
times.
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ones by assuming that they equal the former. We will a
ignore the remaining higher-order correction terms

1^1uL5u1&1 . Therefore, all matrix elements required a
available and there are no more calculations involving
internal degrees of freedom.

F. Poles and residues of the fractions

After all the matrix elements of1^1uLnu1&1 up to n
55 are known, one can easily calculatea1 , b2

2, a2 , b3
2, and

a3 . We find thata1 is a constant~95.1928 cm21! because

1^1uLu1&151^1uLau1&1 and all the others are smooth fun
tions of r and approach their asymptotic values~i.e., asr
goes to infinity! derived previously without considering th
interaction, but we do not present their plots here. In ad
tion, one can verify that the convergence criterion, Eq.~15!,
is satisfied. Then, in terms of these functions, the inner tr
of F(v) can be expressed as

1
K 1U 1

v2L U1L
1

5
1

v2a12
b2

2

v2a22
b3

2

v2a3

5(
i 51

3
Ri

v2zi
. ~43!

The last step in Eq.~43! is based on a theorem about th
poles and residues of the continued fraction.13 If a1 , a2 , and
a3 are real andb2

2 andb3
2 are positive, as is the case her

the fraction can be expressed in terms of its poles and r
dues, and these poleszi are real and distinct and the residu
Ri are positive. There is no difficulty in findingzi because
they are the roots of a cubic equation,

~v2a1!~v2a2!~v2a3!2~v2a1!b3
22~v2a2!b2

250,
~44!

and there are analytical expressions available. One the o
hand, one can easily show thatRi are given by

Ri5$~zi2a2!~zi2a3!2b3
2%~zj2zk!/

3$z1
2~z22z3!1z2

2~z32z1!1z3
2~z12z2!%, ~45!

where the indicesi, j, andk are in cyclic order. Finally, we
note that becauseb2

2, a2 , b3
2, anda3 are functions ofr, zi ,

and Ri are functions ofr too. In the present study, becau
we are interested in the millimeter wave spectral region,
will focus our attention on those poles that are within
close to this frequency region. We present the calcula
poles of interest as functions ofr for T5270, 296, and 330 K
in Fig. 5. For each temperature, there is a pair of cur
associated withu1&1 and u1&2 ; the positive slope curve be
longs to the former and the negative one to the latter.
shown in the figure, all of them are smooth curves and
proach symptotic limits asr goes to infinity. For example, the
two curves forT5296 K approach 46.1918 and255.9511
cm21, respectively. However, the parts of curves of mo
interest are those whose values are within 0–15 cm21. In
practice, we have to extend this region by a few cm21, such
as 23–18 cm21 because we need to evaluate some deri

s
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tives. ForT5296 K, this region is located at separations b
tween 3.5 and 4.5 Å. By comparing curves representing
ferent temperatures, we find that the separations of inte
become smaller as the temperature increases. With respe
residues associated with the poles of interest, we find
they are also smooth functions ofr, and their values are
positive and less than 1, but we do not present them he

G. A classical ensemble average over the
translational motion

After all the poles and residues are known, we ha
completed the evaluation of the trace Trab and can express
the results as

TrabS m†Ararb

1

v2L ArarbmD
5m2M 1(

i 51

3 Ri
~1 !~r !

v2zi
~1 !~r !

1m2M 2(
i 51

3 Ri
~2 !~r !

v2zi
~2 !~r !

, ~46!

where the superscripts~1! and~2! are attached to the pole
and residues to distinguish their associations, and their
pendencies onr are explicitly indicated. Now, we are read
to perform the remaining trace operator Trr in Eq. ~8!; i.e., an
ensemble average over the translational motion of the m
ecules.

FIG. 5. The calculated poles of the continued fraction as functions ofr for
T5270, 296, and 330 K. They are represented by the solid, dot–dashed
dotted lines, respectively. For a specified temperature, there are two s
curves associated withu1&1 and u1&2 , respectively. Each set consists o
three curves but only the one passing through the millimeter spectral re
is presented. Asr increases, the positive slope curve belongs tou1&1 and the
negative one tou1&2 .
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Because the millimeter wave spectral region is far aw
from the strong lines of the pure-rotational band of H2O, we
introduce the quasistatic approximation in which the co
sions are assumed to be of infinite duration and the tran
tion motions can be treated classically. Then, the ensem
average of results obtained from the trace Trab over the trans-
lational motion becomes an integration overr from 0 to in-
finity with r iso as its weighting function. From Eqs.~8! and
~46!, we are able to write the spectral densityF(v) as

F~v!54pm2M 1(
i 51

3 E
0

`

d@v2zi
~1 !~r !#e2bViso~r !

3Ri
~1 !~r !r 2 dr14pm2M 2

3(
i 51

3 E
0

`

d@v2zi
~2 !~r !#e2bViso~r !Ri

~2 !~r !r 2 dr,

~47!

where we have used the the well-known formula

lim
e→01

1

v1 i e2z
5P

1

v2z
2 ipd~v2z!, ~48!

whereP indicates the Cauchy principal value of the integr
We note that in order to include a statistical weight result
from Vani(r ), an extra factorrani(r ), defined by

rani~r !5
1

V E E e2bVani~r ,Va ,Vb!dVa dVb , ~49!

whereV is the volume of integration, should be inserted
Eq. ~47!. However, in the present study, because values
rani(r ) are very close to 1, the effect from including th
factor is negligible.

It may appear that there is an another step required
Eq. ~47! before one is able to evaluate values ofF(v). Usu-
ally, one needs to find roots for a specified frequencyv from
the equationszi

(1)(r )2v50 and zi
(2)(r )2v50, with i

51, 2, and 3. In general, there is no problem to find the
roots directly by solving the equations numerically aft
zi

(1)(r ) andzi
(2)(r ), as functions ofr are known. However,

this step is unnecessary. In fact, every selectedr is a common
root for six frequencies:z1

(1)(r ), z2
(1)(r ), z3

(1)(r ), z1
(2)(r ),

z2
(2)(r ), andz3

(2)(r ). Therefore, instead of finding roots fo
any frequency of interest, one can simply screen two se
zi

(1)(r ) andzi
(2)(r ) and pick up those within the millimete

spectral region. For example, assume thatz1
(1)(r 0) is one of

them. With Eqs.~6! and ~47!, we can calculate the value o
F(v0) with v05z1

(1)(r 0) and obtain the corresponding con
tribution to the absorption coefficient at this frequency,

a~v0!5
16p3

3\c
b\npairv0

2m2M 1

R1
~1 !~r 0!

uz18
~1 !~r 0!u

3r 0
2e2bViso~r 0!rani~r 0!, ~50!

where the factor of@exp(b\v0)21# has been approximate
by b\v0 andz18

(1)(r )[dz1
(1)(r )/dr. As shown by Eq.~50!,

the calculation ofa(v0) is straightforward because all quan
tities appearing on the right are known.

nd
of

on
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Numerical tests show that for the triplets$z1
(1)(r ),

z2
(1)(r ), and z3

(1)(r )%, at most, there is only one of them
located within the millimeter wave spectral region. The sa
conclusion is also true for$zi

(2)(r ), i 51, 2, and 3%. This
indicates that although the indexi runs from 1 to 3, there is
only one choice ofzi

(1)(r ) andzi
(2)(r ) of interest and they

are just those plotted in Fig. 5. Without loss of generality,
denote this choice asi 51. As shown in Fig. 5, these
z1

(1)(r ) andz1
(2)(r ) are smooth functions ofr and, in addi-

tion, they do not cross in the millimeter wave region. Th
implies that the two ranges ofr that make contributions to
a~v!, one fromz1

(1)(r ) and one fromz1
(2)(r ), do not over-

lap.
Based on discussions given above, one can pursue

final calculations in the following way. With Eq.~50!, we
calculate all ofa„z1

(1)(r 0)… with z1
(1)(r 0) located between

say, 23 to 18 cm21. In practice, we obtain a few doze
values, the exact number of which depends on the resolu
of r used. Because all quantities appearing in Eq.~50! are
smooth functions ofr, these values vary smoothly asz1

(1)

3(r 0) varies. Then, for any frequencyv of interest, one can
easily obtaina~v! using the interpolation method. Startin
from an equation similar to Eq.~50!, we repeat the sam
procedure forz1

(2)(r ) and obtain anothera~v!. By adding
these two, we obtain the final value ofa~v!.

H. Interaction potential

Before presenting numerical results for the millime
wave continuum, we discuss briefly the interaction mo
used in the calculations. As mentioned previously, in orde
facilitate the calculations, we assume that the interaction
tential contains cyclic coordinates. Because in the pres
study the optimization of potential models and their para
eters is not our main concern, we simply adopt the model
the H2O–N2 pair used in our previous work,8 which contains
rotational symmetry about theZ axis of H2O. The aniso-
tropic partVani(r ,Va ,Vb) consists of a long-range dipole
quadrupole interaction, given by

Vdq~r ,Va ,Vb!5
3mQ

2r 4 @cosba~3 cos2 ub21!

22 sinba sinub cosub cos~aa2wb!#,

~51!

whereQ is the quadrupole moment of N2 , and a short-range
repulsive interaction represented by a site–site model,14

Vsr~r ,Va ,Vb!5V0(
i Pa

(
i Pb

e2r i j /r0, ~52!

whereV0 andr0 are two parameters. The dipole moment
H2O and the quadrupole moment of N2 are well known and
the values used in the present calculations arem51.8546 D
and F51.466 D Å, respectively.15,16 In the site–site model
the indicesi and j run over force centers of the absorbera
~i.e., H2O) and the perturberb ~i.e., N2), respectively, andr i j

is the distance between the centeri and the centerj. The
force centers of N2 are located on the two N atoms, who
separation is 1.10 Å, and the force centers of H2O are located
on itsZ axis; their distances to the center of mass are equa
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0.07 and 0.56 Å, respectively. Values ofV0 andr0 are cho-
sen asV0 /k51.03107 K and r050.22 Å. We note that the
profiles of the poles shown in Fig. 5 were obtained based
this anisotropic interaction model.

On the other hand, the isotropic interaction is rep
sented by a Lennard-Jones model,

Viso~r !54eF S s

r D 12

2S s

r D 6G , ~53!

where e and s are the parameters. We note th
Vani(r ,Va ,Vb) is the most crucial factor in the whole calcu
lation process, whereasViso(r ) does not play any role unti
the last step in which the average over the translation mo
is carried out. As a result, to adjust the model
Vani(r ,Va ,Vb) and its parameters requires the bulk of CP
time ~about one day on one workstation! because one has t
start each time from the very beginning. Meanwhile, to a
just Viso(r ) is easy and one can get results in a few secon
By comparing results obtained from different choices of t
Lennard-Jones parameters, we adopt the values ofe53.31 Å
ands/k5155 K. Based on a combination of the correspon
ing Viso(r ) and theVani(r ,Va ,Vb) mentioned previously,
theoretical predictions of the second virial coefficients~i.e.,
BT534.43, 27.69, 22.10, and 17.42 cm3/mol for T
5298.15, 323.15, 348.15, and 373.15 K, respectively! agree
well with measurements~i.e., BT54066, 2865, 2064,
15.563 cm3/mol, accordingly!.17

I. Numerical results

In our calculations, we first select 80 values of sepa
tion r to cover the whole range of the interaction and roug
calculate the corresponding values of the matrix eleme
Based on these results, we derive the poles of the contin
fractions and find those separations within 3.0–5.7 Å t
pertain to the poles located in the millimeter wave spec
region. We then reselect another 80 points within a narro
interval. Again, by using more random evaluations in t
Monte Carlo method, we derive the corresponding 80 val
for each of the matrix elements. This is the most time co
suming part of the calculation in the present study. In or
to improve the accuracy of the later calculations, more de
distributions ofz1

(1)(r ) andz1
(2)(r ) within the narrower in-

terval of separation are preferable. This can be ea
achieved by extending the total points of the matrix eleme
from 80 to 200 using an interpolation method. Then, for la
convenience to compare with the MPM89 and MPM93 mo
els, we use a formula derived from Eq.~50! to calculate
contributions to the absorption coefficients~in dB/km! at the
frequencyf 5z1

(1)(r )329.979~in GHz! from all z1
(1)(r ),

a~ f ,T!52.02631025pH2OpN2
u3f m2r 3M 1

3R1
~1 !~r !

z1
~1 !~r !

urz18
~1 !~r !u

e2bViso~r !rani~r !, ~54!

wherepH2O and pN2
are pressures of H2O and N2 given in

kPa, respectively, andu[300/T. In the above expression,m
andr are in atomic units, and all remaining factors includin
M 1 , R1

(1)(r ), and z1
(1)(r )/urz18

(1)(r )u are dimensionless
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The formula used to calculate contributions fromz1
(2)(r ) is

similar to Eq.~54!, except for the replacement ofM 1 by M 2

and the replacement of the superscript~1! by ~2!.
There are several empirical models in current use

predicting the millimeter wave continuum of water vap
resulting from the buffer gas N2.9,10,18 Unfortunately, these
empirical models differ significantly from each other. The
are also a number of laboratory measurements carried o
millimeter windows,19–24 but values of the foreign con
tinuum deduced from measurements contain uncertain
because one has to subtract local line absorptions and
self-continuum from the raw data, and this procedure int
duces errors. As a first attempt to explain the millime
wave foreign continuum from first principles, it is not ou
intention here to make comprehensive comparisons with
models. Instead, we choose the MPM89 and MPM93 mod
as examples because they are well-known and widely u
ones. With respect to measurements, we will compare
results with values deduced from the Baueret al. data19–22

because the measurements were performed more rec
and under more diverse conditions. We plot the calcula
absorption coefficients of H2O–N2 below 450 GHz forT
5296, 330, and 270 K in Figs. 6, 7, and 8, respective
together with values derived from the MPM89 and MPM
models. In Figs. 6 and 7, we also plot values obtained
subtracting local Van Vleck–Weisskopf line contributions
to 1000 GHz from the Baueret al. measurements o
H2O–N2 at 153.000, 213.525, 239.370, and 350.300 G

FIG. 6. The calculated H2O–N2 millimeter wave continuum~in units of
dB/km kPa22! for T5296 K are represented by the solid line. The cor
sponding values derived from the MPM89 and MPM93 models are re
sented by the dotted and dashed lines, respectively. The values de
from the Baueret al. measurements at 153.000, 213.525, 239.370,
350.300 GHz are represented by a1.
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respectively. As shown in these figures, the theoretical p
dictions are smooth functions of the frequency and they
crease almost quadratically as the frequency increases
comparison with the MPM89 and MPM93 models, our va
ues lie between them. In addition, except forf

e-
ced
d

FIG. 7. The same as Fig. 6, except forT5330 K.

FIG. 8. The same as Fig. 6, except forT5270 K; no experimental data is
available.
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FIG. 9. A log–log plot of the calculated H2O–N2 mil-
limeter wave continuum divided by the square of th
frequency ~in units of dB/km kPa22 GHz22! at f
5153.000, 213.525, 239.370, and 350.300 GHz,
spectively, as a function of the temperature. The the
retical values obtained at these frequencies are rep
sented by the solid lines with different symbols1, h,
n, ands marked at their ends, respectively. Those o
tained from the MPM93 model are represented by t
four dotted lines with similar end marks. Because t
continuum of the MPM89 model is proportional to th
square of the frequency, the corresponding values
presented by one dashed line. The values deduced f
the Baueret al. measurements at these frequencies
plotted with the symbols1, h, n, ands, respectively;
for clarity, the same symbol is linked by the dot–dash
line.
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5153.000 GHz, our values agree well with those from
Baueret al. measurements. In order to show the temperat
dependence more clearly for the four specified frequen
f 5153.000, 213.525, 239.370, and 350.300 GHz, resp
tively, we calculatea( f ,T) for T5260, 270,...,290, 296
300,...,370 K and plota( f ,T)/ f 2 in Fig. 9. As shown in the
figure, they are four straight lines; the first three are alm
identical and the fourth is parallel with a little separatio
This implies that the temperature dependence ofa( f ,T) can
be well characterized byTn, where the indexn is a constant.
On the other hand, the frequency dependence is not exa
quadratic, but very close. We also plot the correspond
values obtained from the MPM89 and MPM93 models, a
those deduced from the measurements of Baueret al. in the
same figure. Because the MPM89 model is proportiona
f 2T23, it is represented by one straight line only. Mea
while, each of the MPM93 model and the Baueret al.data is
represented by four lines. As shown in the figure, our resu
those of Baueret al., and the MPM93 model exhibit a ver
similar negative temperature dependence, much stro
than the MPM89 model. Given the fact that the MPM89 a
MPM93 models differ significantly from each other and va
ues deduced from the Baueret al. measurements contain un
certainties, we think that the agreement is satisfactory.

It may be helpful for others if we provide a simple an
lytic formula to represent the present work. By fitting o
results calculated for a dozen different temperatures rag
from 220 to 330 K, an expression for the continuum~in
dB/km!, applicable forf up to 450 GHz and forT ranging
from 220 to 330 K, we find

a~ f ,T!51.952531027pH2OpN2
~300/T!4.6019f 2.0389.

~55!

In the above expression, as expected, the frequency de
dence ofa( f ,T) is very close to, but not exactly quadrati
Meanwhile, the temperature index obtained is a cons
24.6019 that differs significantly from23 of the MPM89
model. It worth emphasizing that the above formula rep
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sents the present calculated continuum only. We think t
further measurements will allow us to refine the theoreti
results.

III. DISCUSSIONS AND CONCLUSIONS

Before we go further, we have to first answer a questi
what are our calculated values from the Lanczos algorith
In Figs. 6–9, we compare our results with the foreig
continuum component of the MPM89 and MPM93 mode
and values representing similar contributions from the Ba
et al. data. This implies tacitly that in the millimeter wav
spectral region, our calculated absorptions contain the c
tinuum of H2O resulting from interacting with N2 only, but
not contributions from local H2O lines. It is difficult for us to
provide a rigorous verification of this assertion because
calculate the millimeter wave absorption resulting from t
whole pure-rotational band of H2O, as shown by the formal
ism presented above. But, based on our calculations, t
are several arguments to support our conclusion. First of
as shown by our derivation of the absorption with the Lan
zos algorithm, the effect of the pure-rotational band is rep
sented by contributions from poles. We have shown tha
the H2O molecule is isolated, up to the cutoff of the conti
ued fractions used here, there are no poles within the m
meter spectral region. In fact, the nearest ‘‘pseudoline’’
T5296 K is at 46.1918 cm21 ~51,385 GHz!. This means
that within our formalism, there are no local lines located
the millimeter region and no corresponding millimeter wa
absorption from them. As mentioned previously, the latte
not rigorously true, but is acceptable as an approximation
contrast, the frequency of the nearest ‘‘pseudoline,’’ 1,3
GHz, gives us a hint as to how to choose a cutoff when o
adds local line contributions. Second, the calculated abs
tions are a smooth function of the frequency and their val
are proportional to a product of the pressures of H2O and
N2. Usually the absorptions resulting from local lines ha
sharp features. One may argue that the calculated absorp
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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resulting from an average over the whole band could con
local line contributions if these lines are smeared comple
and their absorptions are well smoothed in the averag
process. But, no matter how flat a line shape becomes
integration over frequency remains unchanged. Thus, i
clear that such smeared absorptions are proportional to
pressure of H2O only, independent of the pressure of N2 .
Therefore, we can conclude that the calculated millime
wave absorption from the Lanczos algorithm represents
H2O–N2 continuum only. In order to obtain the total absor
tions, one has to add the H2O–H2O continuum and extra
local line absorptions. To obtain the latter is beyond
scope of the current formalism, but it can be easily calcula
using a Van Vleck–Weisskopf line shape, as in the MPM
and MPM93 models. We note that in these two models, th
are 30 and 34 local lines included in the calculations, resp
tively, resulting from a choice of 1000 GHz cutoff. It is in
teresting to note that 1000 GHz is close to the nea
‘‘pseudoline’’ frequency 1385 GHz derived here forT
5296 K. This provides, more or less, a justification for im
posing the 1000 GHz cutoff in MPM89 and MPM93 mode
One could extend the 1000 GHz cutoff if one adds the lo
line absorptions into the theoretical H2O–N2 continuum.

As mentioned above, our knowledge of the experimen
millimeter wave foreign continuum is still somewhat unce
tain. From the theoretical point of view, there are still deba
going on about which mechanisms are responsible for
absorption. Besides the far-wing theory, CIA is a propos
candidate responsible for absorptions associated with the
nary collisions.2 Although one cannot rule out the possib
significance of CIA, there are no quantitative CIA calcu
tions so far. On the other hand, as shown by derivati
given here in detail, we start from a sound physical basis
use the well-known Lanczos algorithm and the Monte Ca
method to perform numerical calculations. All assumptio
and approximations involved have been carefully justifi
Except for the interaction potential, there are no adjusta
parameters. In addition, the same potential has been che
by comparing its predictions of the second virial coefficie
at several temperatures with corresponding measurem
Given the fact that we are able to predict the magnitude
the continuum and its negative temperature dependence
conclude that one is able to explain this continuum with
relying on appreciable CIA.

Concerning the far-wing line shape theory, we can
directly say that the calculated results are from the far-w
contributions of individual lines because there are no l
shapes involved in the present calculations. But, we can
that the present results are due to permanent dipole tra
tions of H2O occurring in the presence of N2 molecules.
Therefore, both the effect of the whole band and the far-w
contributions from individual lines belong to the same phy
cal mechanism. From the technical point view, of cour
these two are not the same. They use different method
account for contributions to the absorption from the perm
nent dipole transitions and pertain to different limitation
We think that in the millimeter spectral region, the prese
formalism is better than the far-wing line shape formalis
because the latter’s applicability becomes questionable. U
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ally, in the far-wing line shape formalism, one introduces t
band average approximation by assuming that all the li
have a common shape, which represents an average ove
band.4 This approximation is valid only in cases where
comparison with amounts by which the frequency of inter
differs from strong lines, the latter are not widely distribut
within the band. Because the frequencies of strong lines
the pure-rotational band with intensities atT5296 K greater
than 10219cm21/(molecule cm22) range from 36.6 to 374.5
cm21, this assumption is not true here. In addition, resu
obtained from the far-wing line shape theory could cont
local structures resulting from nearby local lines in the m
limeter spectral region, but the Lanczos formalism yields
completely smooth continuum that is more suitable for co
parison with empirical models.

In the present study, we faced difficulties to evalua
matrix elements of operators such asL1La

2L1 because the
corresponding weighting functions oscillated wildly. It
well known that the typical representation of a Dirac de
function d(x) looks like a very sharp peak located atx50
and the integration overx remains 1. However, it could hav
another representation that oscillates rapidly along thex axis
but keeps its integration overx unchanged. In fact, Eq.~41!
is an example and it has been used in evaluating a pa

1^1uL1LaL1u1&1 analytically. Other distribution functions
introduced in the present study look, more or less, like
Dirac delta function, but they are not. Some of them cont
sharp peaks and others oscillate rapidly. The Monte Ca
method works well when weighting functions have sha
peaks, but it fails to yield reliable results with rapidly osc
lating weighting functions. At present, we don not know ho
to deal with this case and we had to estimate their values
course, a better treatment is desirable.

We would like to make some comments about other p
sible improvements of the present work. In order to redu
the CPU time, we have assumed that the interaction pote
contains cyclic coordinates. There are no fundamental pr
lems to remove this restriction. In comparison with t
present case, one of the main differences is that the distr
tion functions associated with H2O become three-
dimensional ones and the numbers of coefficients require
evaluate them increases dramatically.3 For example, for
Jmax526 it goes from 53 to 26 235. Another is that one has
carry out nine-dimensional integrations in calculating t
matrix elements. All these are still manageable, but may
quire several days on a dozen CPUs. However, we do
expect that results derived from more general interaction
tentials would differ dramatically from those presented he
Because the leading long-range dipole–quadrupole inte
tion is dominant and has been taken into account, differen
between more general potentials and the one used here c
be large only at short separations. But, these parts of po
tials do not play an important role in the millimeter wav
continuum absorption. An improvement could be made
including the higher-order long-range term, i.e., t
quadrupole–quadrupole interaction of H2O–N2 in the calcu-
lations. Unfortunately, the latter does not contains cyclic
ordinates, and it becomes necessary to perform the com
hensive calculations. In this case, we would prefer to cho
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the more general site–site potential model because with
coordinate representation this does not introduce extra d
culty. Concerning the cutoff of the continued fraction,
course, one can go further to include more terms in Eq.~14!.
With the next higher-order cutoff, one needs to calculate
other two matrix elementŝ1uL6u1& and ^1uL7u1& because
they appear in expressions forb4

2 anda4 . We think that one
has to balance an improvement resulting from taking t
step with other possible corrections at the current stage.

Finally, we would like to say that the present meth
could be used for other molecular systems, such
H2O–CO2 and H2O–O2, and the extension is straightfo
ward. As an example, the density matrix of the CO2 mol-
ecule was reported in our previous work.7 In comparison
with the profile of the density matrix of N2 shown in Fig. 1,
the profile for CO2 has sharper peaks and narrower wid
because the rotational constant of CO2 is much smaller than
N2. In addition, the two peaks of CO2 located at 0° and 180°
are almost even, which results from the fact that there are
odd j ground states. Concerning the interaction
H2O–CO2, the dipole–quadrupole interaction is strong
than H2O–N2 because the quadrupole moment of CO2 is
about three times larger than N2. We expect that effects from
all these differences will show up in the millimeter wav
continuum. Given the fact that some measurements
H2O–CO2 are available,25 it is worthwhile to apply this
method for this system.
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